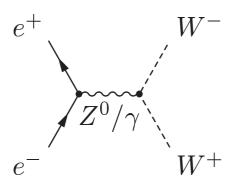
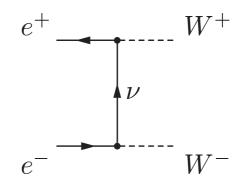
Selection of W-Pair-Production in DELPHI with

Feed-Forward NEURAL NETWORKS

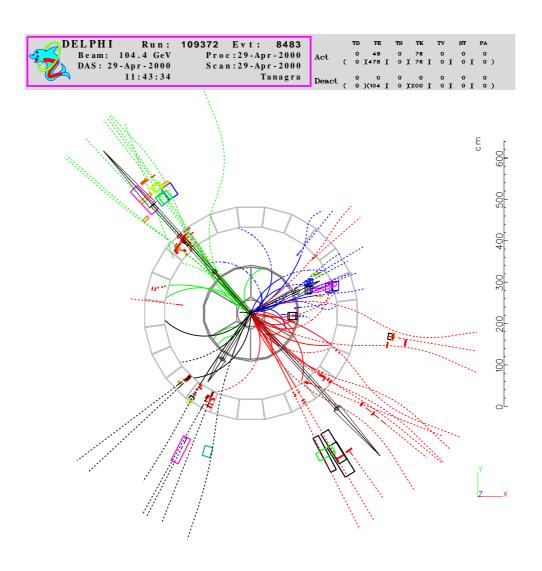

- Introduction
- Hadronic Analysis at 189 GeV
- Determination of Systematic Errors
- Summary



Karl-Heinz Becks, Patrick Buschmann, Jürgen Drees, Uwe Müller, Helmut Wahlen

Bergische Universität-GH Wuppertal,
DELPHI Kollaboration

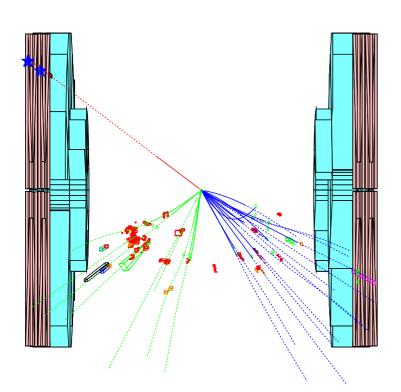
Introduction

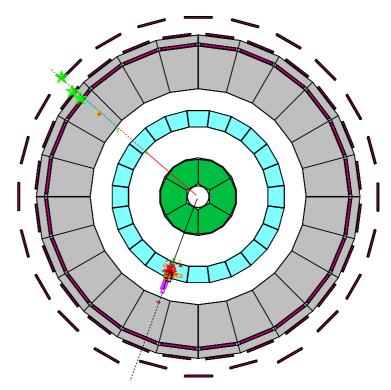


- W-pair-production $e^+e^- \to W^+W^-$ at LEP (CERN) at center-of-mass energies 161 208 GeV
- decay channels:

 $\begin{array}{lll} \text{hadronic} & : & W^+W^- \to q\overline{q}q\overline{q} & (45.9\%) \\ \text{semileptonic} & : & W^+W^- \to q\overline{q}l\nu & (43.7\%) \\ \text{leptonic} & : & W^+W^- \to l\nu l\nu & (10.4\%) \end{array}$

- measurements of production cross sections, W-mass and width as well as branching ratios
- tests of Standard Model predictions and cross checks with earlier electroweak measurements possible


Hadronic WW-Candidate



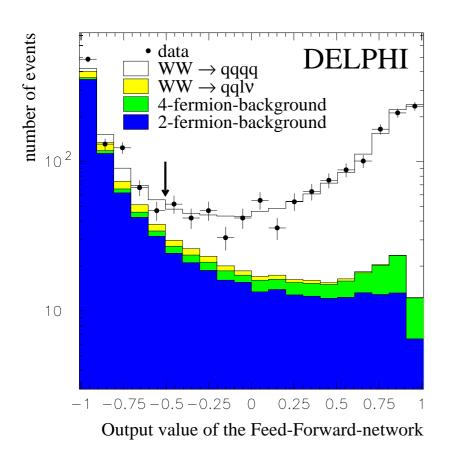
Semileptonic and Leptonic WW-Candidate

Hadronic Analysis at 189 GeV

- signal : $e^+e^- \to W^+W^- \to q\overline{q}q\overline{q}$
 - \Rightarrow 4-jet event topology with similar quark jets:
 - small differences in jet energies
 - big jet angles
 - high total jet multiplicity
- \bullet dominating background : $e^+e^- \to Z^0/\gamma^\star \to q\overline{q}(g)$
 - cross section higher by factor 13
 - initial state photon radiation (Z-returns)
 - 4-jet events with two gluon jets or from a gluon decay
- background : $e^+e^- \to Z^0Z^0 \to q\overline{q}q\overline{q}$
 - same topology like signal and very similar
 ⇒ hardly to reject

Neural Network vs. Linear Cuts

- conventional analysis based on linear cuts
 - effective center-of-mass energy $\sqrt{s'}$
 - number of jets n_{jet}
 - total jet multiplicity N_{all}^{jet}


$$-D = \frac{E_{min}^{jet} \cdot \Theta_{min}^{jet}}{E_{max}^{jet} \cdot (E_{max}^{jet} - E_{min}^{jet})}$$

- feed-forward network with standard backpropagation algorithm
 - loose preselection against non-4-jet-events and Z-returns
 - 13 jet- or event-variables as input nodes:

$$\sqrt{s'}$$
, Θ_{min}^{jet} , N_{all}^{jet} , $d_{join}(4 \rightarrow 3)$, $E_{max}^{jet} - E_{min}^{jet}$, b_{min} , $\sum_{i=1}^{7} |\bar{p}_i^3|$, probability from constrained fit, rapidity, sphericity, thrust, H3, H4

- architecture 13 7 1
- 3500 training MC-events from signal and QCD-background
- test with additional ZZ MC-training sample and 3 output nodes
 ⇒ more CPU time , result not improved

Selection Results at 189 GeV

		NN	cuts
signal efficiency	[%]	88.74	85.58
remaining bg	[pb]	1.886	2.228
selection purity	[%]	77.84	74.14
eff × pur	[%]	69.08	63.45
selected events		1298	1342

- ⇒ clear improvement in selection quality, similar at all other LEP-energies
- \Rightarrow NN chosen for Delphi cross section analysis

Systematic Studies I

systematic errors of signal efficiency and remaining background necessary basis for error of cross section

studies of network stability:

- test of different network architectures
- use of different numbers of training events and of different training samples
- variation of network parameter η (learning rate, $0.0025^{+0.015}_{-0.0015}$) and α (momentum term, 0.56 ± 0.3)
- ⇒ all results compatible within statistical uncertainties
- ⇒ no contribution to systematic errors assumed

Systematic Studies II

systematic studies using NN as mathematical function (black box) fixed training, always the same cut

- comparison of MC generators with different hadronisation models and different MC parameter settings
- ullet data-MC-agreement using the technique of mixed Lorentz-boosted Z^0
- smearing of input variables taking detector resolution into account
- influence of final state interactions on signal efficiency (Bose-Einstein correlation and colour reconnection)

Final Result

- systematic effect on efficiency and background for each method
- combination of different systematics taking into account correlations between methods
- determination of cross section from binned maximum likelihood fit to output distribution taking into account the expected background

final result for NN analysis:

$$\sigma_{W^+W^-\to q\overline{q}q\overline{q}} = 7.36 \pm 0.26 \,(stat) \pm 0.10 \,(syst) \,pb$$

as comparison result for linear cuts:

$$\sigma_{W^+W^-\to q\overline{q}q\overline{q}} = 7.56 \pm 0.28 \, (stat) \, pb$$

(systematic error expected to be compatible to NN analysis)

Summary

- application of feed-forward neural network in direct selection of hadronic WW-candidates
- significant improvement in selection quality compared to standard analysis
 - \Rightarrow Delphi cross section analysis based on this selection procedure
- complete determination of systematic error for publication
 - tests of network stability only as cross checks
 - based on ideas for linear cut analyses
 - neural network as mathamatical function